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This paper (Part I) describes the theoretical and computational bases of some non-empirical 
calculations on small organic molecules to be reported in later papers (Parts I I  et seq). 

Approximate solutions for the usual fixed nucleus electronic Hamiltonian, in the term of 
wave functions composed of Slater determinants, are discussed, with particular emphasis on 
their computational utility. Possible choices of basis functions, from which to form the deter- 
minants are examined, and the advantages of Gaussian type functions (GTF) centered on the 
component atoms are pointed out. Some of the properties of molecules which can be calculated 
using such approximate wave functions are outlined. Finally an at tempt is made to discuss 
the current limitations of non-empirical calculations of the type described here, and some 
guesses are made about their future. 

Brief outlines as a set of appendices are given of the mathematical formalism and computa- 
tional details of the calculations. 

Cet article (l~re partie) d6crit les fondements th6oriques et pratiques de quelques calcnis 
non semi-empiriques sur de petites molScnies organiques qui seront expos6s dans des articles 
ult6rieurs (2g partie et suivantes). 

On s'y int6resse, dans l'hypoth~se adiabatique, ~ des solutions approch~es utilisant des 
d~terminants de Slater, en insistant particniigrement sur l'utilit6, pour les ealculs, d 'une telle 
approximation. Des ehoix possibles de fonctions de base utilisables pour la constitution des 
d6terminants sont examines et les avantages de fonetions du type gaussien (GTF) eentr6es 
sur les atomes sont soniignSs. On donne un aper~u des propri6t6s mol~cniaires calculables s 
l 'aide de ces fonetions d'onde approch~es. Enfin une tentative est faite pour discuter des 
limites habituelles des calculs non semi-empiriques du type de ceux d6crits ici, et certaines 
predictions concernant lear avenir sont effectu6es. 

Le formalisme math6matique et les d~tails de calcul sont esquiss~s briSvement dans une 
s~rie d'appendices. 

Diese Arbeit (Tefl I) beschreibt die theoretisehen und rechentechnisehen Grundlagen 
einiger nieht-empirischer Reehnungen an kleinen organischen Molekfilen, tiber die in spateren 
Arbeiten berichtet wird (Teil I I  und folgende). 

Im Rahmen der BormOppenheimer-Naherung werden aus Slaterdeterminanten zusam- 
mengesetzte Ni~herungslSsungen im Hinblick auf ihre reehentechnische Niitzliehkeit disku- 
tiert. Es wird gepriift, welche Wahl yon Basisfunktionen zum Aufbau yon Slaterdeterminanten 
niitzlich ist, und die Vorteile der Gau2funktionen dargelegt. Es wird ein Uberblick fiber die 

* This paper has been accepted as review article by the editors. 
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Molekiileigensehaften gegeben, die mit diesen Funk~ionen bereehnet werden k6nnen. SehlieB- 
lich wird der Versuch unternommen, die gegenwgrfigen Grenzen der nich~-empirisehen Reeh- 
nungen der besehriebenen Art zu diskutieren, und es werden Vermutungen fiber die Zukunft 
geguBerg. 

Ein kurzer Auszug aus dem mathematischen FormMismus und reehentechnischen De~ails 
wird im Anhang gegeben. 

1. Introduction 

I t  has been the desire of organic chemists for the last t00 years to establish 
correlations between molecular structure and chemical behaviour. Such correla- 
tions became possible in principle in the late t920's with the discovery of wave 
mechanics and a fuller realization of the role tha t  the electron played in chemical 
binding. Practical use of the discovery, however, for organic compounds is only 
just becoming feasible. With the development of fast automatic digital computers, 
the prospects for non-empirical calculations on small and medium sized molecules 
seems now, rather promising. In  this series of papers some calculations on such 
systems are reported in an a t tempt  to find how far we can get with the present 
generation of computers. 

This first par t  of the present series is intended to serve four purposes. 

(i) In  a "Theoretical Discussion" (Section 2) the basic ideas of non-empirical 
molecular quantum mechanical calculations are reviewed with particular reference 
to the present approach. 

(2) The "Computational Discussion" (Section 3) indicates the problems of 
implementing this approach, and the methods adopted for its solution. 

(3) In  Section 4 some results of the present approach on very simple systems 
arc presented, together with a discussion of the accuracy and potential of the 
methods discussed. 

(4) In  a set of "Appendices" (Section 5) the detailed mathematical  formalism 
needed in later papers is provided, and some of the computational details are 
discussed. 

2. Theoretical Discussion 

The fundamental problem with which we are concerned is that  of obtaining a 
solution of the Schr6dinger equation for electronic motion in the field of fixed 
nuclei: 

~ f  ~ e  = Ee ~e (1) 

where ~VC is the usual Hamiltonian operator, which is (in Hartree atomic units) : 

- - ~ h ( i ) +  ~ 1 yd = ~ [ -  �89 V2(/) + v(/)] + ~ t - -  (2) 
i>]  r~j i i>]  r~j 

the sums extending over all electrons. Ee is the electronic energy of the system, 
and ~e  is the electronic wavefunction, which must  be antisymmetric with respect 
to interchange of the coordinates of any two electrons. There is at present no 
method of obtaining an exact solution ~e  for many  electron systems, and some 
approximation is necessary. 

The most powerful method of finding an approximate solution of (t) is by  use 
of the Variation Principle, which states that  any approximate solution kg is such 
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tha t  the quanti ty 

E [,T*~Td'r 
S T* T dv (3) 

where integration is over all space and spin coordinate of the electrons, will be not 
less than  Ee, and will only be equal to Ee ff ~ is the exact solution. The problem 
tha t  we a t tempt  to solve is thus tha t  of choosing }P to minimize E. The computed 
value E will generally be used as a criterion of accuracy for the wave function but  
other criteria (eg. dipole moment)  could equally well be used. 

2.i  5iany Determinantal  or Polydetor (Valence Bond and Configuration 
Interaction) Wave Functions 

The requirement tha t  }P be antisymmetrie makes it possible to expand ~g 
without loss of generality as a linear combination of functions r  which are 
themselves antisymmetric : 

P 

The state h y to be investigated belongs to an irreducible representation of the space 
and spin symmetry  group of the molecule, and so we m a y  restrict consideration to 
those ~5~ which belong to such a representation. BoYs and Cook [7] refer to a T 
of form (4) as a poly-detor wave function and to the individual O~'s as co-detors. 
These r  can be considered to be simple linear combinations of detors, i.e. the 
usual Slater determinants (5) as shown for an/N- electron problem; in detail: 

(_Ty" !)-'i~ 

r w,~(2) 

Or in an abbreviated form: 

r w~2(l) ....................... r wrN(l) 
r w~2(2) ....................... r w~N(2) 

Cv2(N) wick(N) ................ r wvN(N) 
I 

r w~2(2) .. . . . . . . . . . . . . . . .  ~pN(N) w~lv(N) 1 �9 

(5) 

1 4 "  

The functions r and wr(i) are functions of the spatial and spin coordinates 
respectively of a single electron i. I t  can be shown that, if the functions Sr form a 
mathematical ly  complete set of one-electron functions, the set of all determinants 
which can be formed from them is also complete, so in principle, at least, a poly- 
detor wave function can be made to approximate the exact solution to any 
required degree of accuracy. 

Substitution of (4) into (3) transforms the minimization of E into the solution 
of the secular equation 

~, c~ (H~q - E S~q) = 0 q = i ,  2 . . .  (6) 
P 

where 
g p q  = f ~ $  ~ e  c q  d~ (7) 

S~q = I (b~ Cq dr (s) 

integration being over all electronic coordinates. 
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I t  should be noted that  the great majority of calculations on molecular systems 
have been performed using wave functions of the form described above, or wave 
functions which could easily be put  in this form. The seemingly great differences 
between many calculations are merely due to different choices of the functions 
t r  and ~ .  This choice arises because in practice it has been found impossible to 
use anything like a complete set of functions for tr .  Even with an incomplete set 
of tr ,  the number of ~b~ can still be very large. 

In the Valence Bond (VB) method, the t r  are chosen to be functions centered 
on the various atoms (atomic orbitals: AO's). The co-deters ~ are formed from 
spin eigenfunctions called structures, which correspond to possible allocations of 
the electrons to these AO's. The early calculations on H~ by t t ~ I T L ~  and LO~DO~ 
[22] exemplify well the valence bond approach. Its application to more complicated 
molecules is discussed by E Y R i e  et al. [14] as well as by recent textbooks [15, 44]. 

After a number of early successes the method was very little used in a priori 
calculations. This was largely due to the fact that  the non-orthogonality of the 
orbitals on the different centres made such calculations on large systems extremely 
difficult. Recently, however, there have been attempts to rehabilitate the method 
[28, 29]. 

In the method of Configuration Interaction (CI) the t r  arc allowed to be many- 
centre functions. This freedom in the t r  allows them to be orthogonal, simplifying 
the formulae for the matrix elements between the ~b~'s. By a careful choice of the 
Or, the expansion can usually be made in such a way that  a single co-deter predo- 
minates, and that  co-deter alone provides a reasonable and simple approximation 
to the correct wave function. This may be achieved as follows. A single co-deter 
wave function is constructed in which the t r  are considered to be variable func- 
tions. The energy of this wave function is then minimized with respect to varia- 
tions in the tr .  In practice this minimization is effected by a self-consistent field 
(SCF) procedure and the resnlting tr 's  are called sell.consistent field molecular 
orbitals (SCF-MO's). 

I t  is usually found also, that  ~ho number of effective r  which can be formed 
from the SCF-MO's is much smaller than the total number o f r  possible. Only these 
co-deters which differ from the dominant co-deter by less than three orbitals play 
an important part  in the expansion (4). In the ensuing work we shall consider only 
such a limited set of co-deters and refer to this method as self-consistent field 
configuration interaction (SCF-CI). The co-deters ~5p are called configurations 
because they may be considered as approximate single co-deter wave functions 
for the appropriate excited states of the molecule. 

In  actual calculations on molecules it has not yet  proved possible to determine 
the SCF-MO's exactly, in a manner analogous to that  used in determining SCF 
atomic orbitals. Instead the t r  are expressed as linear combinations of a set of 
basic functions ~]~ (i = t,  N): 

i=1 

and the coefficients Yri are considered to be the variables in the SCF procedure. 
As the basis functions most often used are atomic orbitals, the method is called 
the linear combination of atomic orbitals (LCAO) MO-SCF method. 
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In  both approaches the constructed many-determined wave functions are used 
as approximations to the exact electronic wave function gze. I t  seems to be fair 
to say as a comment on the success of these a t tempts  tha t  in most  cases VB 
provides lower total  energy values for the molecule (and in a sense bet ter  wave 
functions) than  a single co-deter (i.e. MO-SCF) but  even fairly limited CI is 
superior to the VB approach [29, 10]. However, it should be noted tha t  this is 
true only because of the various approximations generally made in the two me- 
thods and in theory if one includes all possible configurations or structures tha t  
can be formed from a given set of atomic orbitals, the CI and VB wave functions 
will be identical. 

The computational simplicity of LCAO-MO-SCF calculations and the ease of 
interpretation of the results in terms of chemical concepts has made this method 
very popular [11, 49]. Since the LCAO-MO-SCF calculations is essential for CI, 
the various features of it will be discussed in the next section. 

2.2 Single Determinant  (Molecular Orbital) Wave Functions 

In  the hierarchy of molecular wave functions a single configuration (co-deter) 
is the simplest unit tha t  exhibits the required symmetry  properties. In  some cases, 
this co-deter can be chosen to be a single determinant of doubly occupied orbitals 

1 
r = V(2M))g det I r a ( l )  r fl(2) . . .  tM(2M-I) a(2M-l)  tM(2M) D(2M)I 

= (l r tZ . . . . . . . . . . . . . . .  1) (10) 
where the 2M by  2M determinant  ~50, describes 2M electrons in M molecular 
orbitals. A state which can be represented by  such a wave-function will be referred 
to as a closed shell, a definition which includes the intuitive chemical concept of 
a closed shell state. All other states will be referred to as open shells. 

As most molecules have closed shell ground states we shall be largely interested 
in wave functions like ~b 0. In  this section we shall outline the method used for 
determining the constituent molecular orbitals of such a function, and later 
[Appendix 5.t (ii)] we shall extend the discussion to some of the cases where the 
co-deter is composed of more than  one Slater determinant.  

As mentioned in the previous section, the molecular orbitals t r  are generally 
expressed as linear combinations of basis functions with variable coefficients. The 
basis functions are considered fixed and the required molecular orbitals are found 
by determining the coefficients which minimize the energy of the single co-deter 
wave function. 

In  the case of co-deters like 4 o ROOT~AA~ [38] has shown tha t  the coefficients 
may  be determined by  a procedure involving the iterative solution of the eigen- 
value problem, (which is ideally suited for automatic  computation):  

F r• = (11) 

The scalar quant i ty  er is called the orbital energy of the orbital ~r, and F and G 
are N by  N matrices with elements as defined in Appendix 5.t (ii). 

As can be seen the solution of ( t l )  will yield N new vectors Yr each associated 
with an orbital energy er. There are however only M molecular orbitals involved 
in ~50, and these are usually called the occu2aied orbitals (the remaining N - M  
being called ~noccupied or virtual orbitals). 
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I f  it is desired to represent the ground state (i.e. the state of lowest energy) of 
a system the occupied molecular orbitals are chosen as those which correspond to 
the lowest M orbital energies. That  this choice is reasonable can be seen from 
considering the physical significance of the orbital energy. I t  is the energy tha t  a 
single electron would posses in the field of the nuclei and all the other electrons. 

I t  should perhaps be noted at this point tha t  if the atomic orbitMs (~]) form a 
complete set, the molecular orbitals resulting from it would be the best possible 
orbitals within the single determinant restriction. The best possible molecular 
orbitals are referred to as the Ha,rtree-Fodc molecular orbitals. As is well known 
it is possible to obtain by  numerical methods such orbitals for atoms in singlet 
states, and recently it has been shown [40] tha t  very good approximations to 
these orbitals can be obtained using the analytic procedure outlined above. The 
m a n y  electron wave function tha t  describes the ground state ( ~  = ~o) which is 
assembled from Hartree-Fock molecular orbitals is called the t Iar tree-Fock wave 
function. 

Table 1. The number of one (p) and two (q) electron 
integrals associated with various size (iV) basis sets 

N Number of Molecular Integrals 
Size of ]3asis Set 

One-Electron Two -Electron 
Integrals (p) Integrals (q) 

10 55 4 540 
20 210 22 t55 
30 465 108 345 
40 820 336 610 
50 I 275 814 725 

100 5 050 12 751 250 
200 20 100 202 015 050 
300 45 150 1 019 261 250 

The whole SCF procedure (11) can be made automatic [see Appendix 5.i (ii)], 
after the atomic orbitMs (r]) are chosen and the one-electron integwMs (~ Iv/j), 
(~/I h I ~1~) and the two-electron integrals (~]~ ~N I ~ ~ )  are evaluated. Usually the 
atomic orbitals are real, so there are at  most  p = N(N § 1)/2 distinct integrals of 
each of the one-electron types and q = p(p + t)/2 of the two electron type. Since 
q varies roughly as the fourth power of N, the number of two-electron integrals 
rapidly becomes enormous as h r increases. To illustrate this difficulty, the number 
of integrals to be evaluated for various values of N is tabulated in Tab. 1. I t  is 
this large number of integrals which is really the limiting factor in molecular 
orbital calculations. 

In  the a t tempt  to keep N within manageable limits, much consideration has 
been given to the form of the basic functions (7)" The numerical Hartree-Foek 
(H.F.) atomic orbitals are perhaps the most obvious choice. However, they are 
rejected for larger molecules because of the difficulty of calculating integrals over 
numerically defined quantities. Also, there is no theoretical reason to believe tha t  
serf-consistent H.F.  atomic orbitals would approximate molecular orbitals more 
accurately than a set of appropriately selected analytic functions. 
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Up to the present t ime the nodeless Slater functions have been the most  
widely used atomic orbitals. Their general form is: 

U = ~Vrn-i e-~r S~,m (~, q)) (12) 

where n, l, ~z are quantum numbers (n = i, 2, 3 . . . .  ; 1 < n; - l_< m g l), N is 
a radial normalizing factor, and Szm (~, qg) a normalized spherical harmonic. The 
radial distance from the centre considered is r and ~ is the orbital exponent 
(sometimes called the effective nuclear charge). The Slater functions are quite 
similar to the shape of the I tar t ree-Fock orbitals both near the nucleus and at 
large distances from it. Consequently linear combinations of very few of them 
have been shown to approximate the Hartree-Fock orbitals in atoms very closely. 
They would seem therefore to be ideally suited for composing molecular orbitals, 
but  their use in polyatomic calculations presents a severe difficulty. 

As can be seen the two electron integrals (~i UJ 1 ~ ~ )  m a y  involve orbitals 
centred on one, two, three or four different atoms. The one and two centre integrals 
offered no particular difficulty and there are a number of good methods of eva- 
]uating them accurately and quickly [39, 42, 13]. The three and four centre 
integrals do, however, present considerable difficulties and to date only  two 
acceptable methods h~ve been proposed for their evaluation [2, 46]. To obtain 
accurate values by  either of these methods involves much complicated calcula- 
tion. Even with modern computing machinery there are integrals tha t  m a y  take 
of the order of minutes to evaluate. As three and four centre integrals usually 
constitute the bulk of the integrals in a polyatomic calculation, the difficulties are 
obvious. 

To combat this difficulty R has been suggested [5] tha t  the radial portion r n-i  
e -~r of the Slater orbital [15] be replaced with a gaussian function r2(n-l) e -~r~. 
This would enable the many  centre integrals to be done very easily and quickly. 
In  principle, since the gaussians form a complete set, the exact molecular orbita]s 
may  be expressed in term of them. Unibrtunately the behaviour of the gaussians 
near the nucleus and far away from it is incorrect, so many  more gaussians than 
Slater functions are needed to approximate the exact, orbitals to the same degree 
of accuracy. I t  is possible, however, to evaluate the integrals over gaussian 
orbitals something like a thousand times as fast as integrals over Slater orbitals, 
so tha t  provided there is space in the computer to hold all the integrals, it is 
possible to include enough gaussians to hope for success using them. Furthermore,  
if numerical accuracy is not the pr imary object, semi-quantitative results might 
be obtained with a minimal gaussian basis set for quite large molecules. 

2.3 Calculable Properties of Molecules 

So far discussion has been limited to methods of obtaining an electronic wave 
function for a system of electrons and nuclei in the Born-Oppenheimer (fixed 
nucleus) approximation neglecting relativistic effects. Implicit ly only isolated 
systems have been considered. The next stage is to obtain information about the 
properties of the system whose wave function has been calculated. In  discussing 
these it is convenient to adopt  the classification of them given by  BoYs and 
Coox [7]. This classification associates a group of properties with distinct compu- 
tational stages of what  may  be called a complete quantum prediction. 
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BoYs and Cook consider four types of properties, which they classify as 
primary, derivative, induced and interaction properties. Primary properties can 
be calculated from the density kernels already obtained. These include, for example 
dipole moment and electron density in addition to energy. Derivative properties 
can be obtained by performing the calculations again for different nuclear configu- 
rations. Examples of derivative properties are force constants. Primary induved 
properties, such as polarizability and refractive index, involve the effect of fields 
on the system and for their calculation require knowledge of a manifold of excited 
states. Finally the calculations of Interaction properties between systems. 

In future papers the main concern will be with certain of the primary and 
derivative properties and these are discussed in a little more detail here. 

a) Primary Properties 

The primary properties to be considered are the total energy of a system in its 
ground and excited states, the molecular binding energy and ionization potentials 
the one electron densities, and the electric dipole moments. 

In the fixed nucleus approximation the total energy of the molecule obtained 
simply by adding the nuclear repulsion energy to the total electronic energy 
obtained from the solution of (6) in the CI treatment or from ( i t )  in the SCF 
treatment. Although the total energy of the system is not a quanti ty of particular 
physical or chemical interest, the binding energy defined as the difference be- 
tween the total molecular energy and the energy of the separated atoms, is. As 
this is a small quanti ty formed by the substraction of two very large quantities it 
is, of course, very sensitive to errors in the latter. I t  is usual to calculate the 
electronic energies of the atoms using the same basis set on the free atom as was 
used in the molecule, in the hope of cancellation of errors by subtraction. 

I t  is possible to calculate the ionization potential of an electron in a molecule 
by finding the energy of the ion and subtracting the energy of the molecule from 
it, but  here once more it is the small difference between two large quantities. In  
SCF calculations it is customary to invoke Idoo]~MA~S' theorem [25] which 
states that  an ionization potential is approximately equal to the negative of the 
appropriate orbital energy. 

In  'performing a configuration interaction calculation, a theorem originally 
due to MACDONALI) [27] and later extended by  DAVIES [12], enables us to say 
that  each of the higher roots resulting from the solution of the secular problem are 
upper bounds to the energies of the appropriate excited states of the molecule if 
the ground state conformation is preserved in the excited state. In  practice it is 
found that,  the excited state energies calculated from the roots are, in all but  the 
lowest few, rather poor bounds. As the lowest are generally those of greatest 
interest however this is not such a severe disability. In the SCF approach a wave 
function consisting of just one of the terms in the CI expansion (single co-detor) 
is generally chosen to describe an excited state. The total energy of this function 
is usually a very poor approximation to the energy of the actual state, and is an 
upper bound only ff the excited state co-detor differs from the SCF ground state 
co-detor by  one orbital alone. 

Another primary property is the one electron density of the molecule. In  
theory one can obtain the picture of the molecule that  would be obtained by x-ray 
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or electron diffraction methods. In  practice one cannot be so accurate, but  never- 
theless a useful general picture of the disposition of change over the nuclei may  
quite readily be obtained using the one particle density matrix, and the basis 
orbitals [Appendix 5.i (iii)]. As these pictures are somewhat cumbersome to use, 
a rough semi quantitative idea of the electron density distribution in molecule 
may be obtained by the method o 5 population analysis [33, 30]. The actual 
mechanics of this process are described in Appendix 5.i (iv). 

Finally the electric dipole moment, which is defined for electronic states i and 
j of a molecule as : 

n 

where an is a position co-ordinate (x, y or z) of the n-th electron. This quanti ty 
is closely related to the absorption (and transmission) coefficients, and determines 
the selection rules, for electronic transitions. The a component of the permanent 
dipole moment of a molecule in state i is 

where Zn is the charge on the n~ nucleus, and an its a co-ordinate. 

b) Derivative Properties 
The simplest derivative property of interest is the equilibrium conformation 

of the molecule. This may be determined by  performing a series of calculations 
each for a different conformation of the system until the conformation of lowest 
total energy has been found. 

The force constants for nuclear vibration are found in the present approxima- 
tion by  a similar series of calculations. Here however, the electronic energy of the 
system is expressed as a function of the nuclear co-ordinates and the force constants 
obtained from the appropriate derivatives of this function with respect to nuclear 
displacement co-ordinates [15]. 

3. Computational Discussion 

3.i  The Polyatom System 

The preceding sections have presented the theory of non-empirical molecular 
calculations as seen from the authors viewpoint, with some reference to feasibility. 
The present section presents some details of programs comprising the Polyatom 
system [/4], which represents their a t tempt  to implement such calculations on 
the IBM 709/90/94 computers. First, however, is presented the general philosophy 
of the system, which differs somewhat from the one usually adopted. 

First, the system is designed to be as open-ended as possible. This stems 
naturally from the fact tha t  the four authours have rather different approaches to 
the subject, and each would like to be in a position to incorporate his own pro- 
grams in the system without causing any great inconvenience to the others. This 
necessitated a division of the system into blocks which could be considered more 
or less independent. Each block was to be implemented by  a separate program, 
which was to take data from tapes, and parameters from cards, and leave its 
results on tape, with printed output  if required. Thus each calculation would 
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consist of the execution of several programs which could be executed together, or 
separately ff the intermediate tapes were saved. The different configurations of 
programs which could be required necessitated a rather general scheme for the 
manipulation of intermediate tapes, which has been reported elsewhere [17]. 

Secondly, generality has often been preferred to efficiency. That  is, where 
there has been a choice between a general-purpose and a special-purpose one, the 
former has been chosen, even though it may not always operate at maximum 
efficiency. Some at tempt has been made, however, to obtain efficiency when the 
programs are working at their upper limit. 

Thirdly, simplicity has been preferred to efficiency. That  is, all except the 
most basic programs are written in FORTRAN II, and these are heavily subrouti- 
nized to preserve readability and versatility. I t  should be noted that  this and the 
preceding principle have been adopted not because of majestic indifference to the 
finances of such calculations but  because it is generally felt that  much work in 
this field has been duplicated because of unduly specialized programs and excessive 
pride in writing programs which no-one else can understand. The authors feel that  
adherence to these principles has resulted in a system of immense potential power, 
which is at the same time simple to use, and simple to extend. However, as expe- 
rience of the system has accumulated, the bottlenecks in the calculations have 
become more pronounced, and it is expected that  much useful work could be 
devoted to stream-lining these portions. 

The preparation of these programs has been reported earlier [3] and it has been 
noted that  it is essentially the extension of a preliminary system developed by  
C. M. Rn~vEs, M. C. HARrisoN and R. FL~TCgV, R for a Pegasus computer at 
Leeds University. The present programs are specified and their functions outlined 
in Appendix 5.2 (i). 

3.2 Selection of Gaussian Basis Sets 

The choice of the orbital exponents for atomic or molecular calculations has 
been, until fairly recently, largely a matter  of guesswork. The basis was usually 
the Slater rules for atoms, which gave a rough empiric fit to the optimum values 
of the exponents for a minimum basis of Slater functions. These values were often 
used in molecules also, but  have been shown [9] to give results which are definitely 
inferior to the optimum values. I t  is now recognized that  careful optimization of 
parameters can be very useful in improving the results for a given basis size. 
However, rigorous minimization of a function of many non-linear parameters is 
a lengthy process, usually requiring much more calculation than the use of a basis 
set twice as large. Two reasons can be given for the at tempt to find optimum 
parameters. The first is that  as basis sets are increased in size, in an at tempt  to 
reduce the 'criticalness' of the parameters, problems of linear dependence arise. 
The second is the hope that  there will emerge sufficient regularity in the values 
for a general set of rules to be formulated. 

A fair amount of work has been done over the years using Slater functions, 
and there is sufficient evidence to provide at least intuitive estimates of parameter 
values, and possible accuracy of these wave functions. For Gaussian functions 
this was quite lacking until rather recently, when it appeared that  bases of be- 
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tween two and three times the size of a Slater basis would give comparable ener- 
gies. The larger basis size implies a more difficult optimization problem, but  also 
suggests tha t  the solution m a y  not be quite as critical as for STO's. Fairly system- 
atic investigations have been made by  I~EEVnS [85], and i ~ v n s  and tIA~RISO~ 
[86] using small basis sets, in which sealing and minimization of overlap are used 
to simplify the optimization. K~Avss [25] also follows the sealing hypothesis, 
while A L L ~  [1] suggested a least square fitting to the atomic Hartree-Fock 
orbitals, l~ecent results by  tIvzINAGA [23] give opt imum values of exponents for 
the atoms up to Ne, and these will be undoubtedly very valuable in future work. 
The work reported in later papers in the present series was started before HVZl- 
NAGS. obtained his results, and a cruder optimization procedure was used. This 
procedure, together with extrapolated values for the atoms required in further 
papers, is given in Appendix 5.2 (ii). 

4. Some Simple Examples and Remarks 
Here the results of previous calculations on some systems using the methods 

outlined above, are reviewed and some new calculations are presented to provide 
a background for future work. The systems discussed are chosen not so much 
because of their chemical interest as because they examplify aspects of the present 
method rather  well, and many  other calculations on them are available for compa- 
rison. 

To give some idea of the sort of accuracy tha t  may  be expected using GTF's  
in the SCF approximation total  energies here been calculated for the 4S state of 
the N atom. The results are given in Tab. 2 for basis set 3 s + i~, 5 s -t- 2P and 
7 s -I- 3P, together with the energy given by  a minimal STO basis and accurate 
Hartree-Fock orbitals. We see tha t  the minimal STO energy is slightly worse then 
tha t  given by  the 7 s -b 3~ GTF set. 

Further  information is available from previously reported calculations on 
hydrogen fluoride [20]. I t  was found tha t  a 5 s + 2P basis on the F atom_ gave lower 
orbital energies then the minimal STO Basis, but  higher total  energy. A 5 s + 3~ 
basis set on F gave about  the same total  energy as the minimal STO basis, but  in 
many  respects might be expected to give a superior wave function. A 9 s + 5P 
basis set was within about 0.045 a.u. of the Hartree-Fock energy, slightly bet ter  
then an STO calculations using half as many  functions. 

The results of these calculations (A, B, C, D) are summarized in Tab. 3, to- 
gether with another (E), performed with only 2 s on the hydrogen to see how the 
calculated properties alter when the hydrogen is more poorly represented. The 
equilibrium interatomic distance (Re) and the force constant (/~e) of the stretching 
motion are also shown in Tab. 3. Graphs of the variation of Re and ICe obtained 
from calculations A, B, C, and D are shown in Fig. t. I t  is interesting to see tha t  
while the energy values (primary properties) vary molmtonlcally with basis set, 
the derivative properties pass through local minima or maxima before tending to 
converge. 

Calculations on He and I-I + [54, 55] and calculations on larger molecules appear 
to be consistent with these results. K~At~ss' work [25] on CI-I 4 as well as on other 
molecules [13, 26] and eaiculations by  H a r r i s o n  and MOSKOWlTZ on OH-,  H20 
and HaO + [32] and CeH~ [31], gave no reason to suspect hidden drawbacks. 
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However properties which are critically dependent on the shape of the wave 
function near the nucleus, such as isotropic hyperfine splitting, will have to be 
carefully investigated. 

There is considerably less information available about the effectiveness of CI. 
Early work using STO's was rather  inconclusive. Much of the promising work 
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used AO's instead of MO's (i.e. valence bond calculations) and so the effects of CI 
were difficult to assess. However recent work on small systems (2, 3 and 4 elec- 
trons) gave very accurate results [41, 52]. Many interesting results were obtained 
by  FOSTEI~ and BoYs, and in particular their I-I~CO calculation [16], in which 
they  used localised MO's for CI. 

Only a few calculations using GTF's  in CI are available. R~EVES Calculations 
[35] on N and NI-I showed little improvement  over the SCF results, but  tho basis 
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Fig. 1. The variation of calctflated prima~y and derivative properties of hydxoge~ fluoride with the size of the 
basis set 

The results were obtained using a general set of programs and, in theory, the 
extension to larger systems is just a matter of inserting different parameters. 
However, in molecules of any size the number of configurations is likely to be 
astronomical. For beryllium it was possible to include initially all useful configura- 
tions. Clearly a method of selecting the most useful configurations in advance will 
be essential in any future application. Second-order perturbation theory seems 
the simplest method and this is currently been used, but this does not overcome 
the fundamental difficulty of slow convergence with number of configurations. 
Work is now in progress investigating this feature but much work remains to be 
clone before a realistic assessment of the usefulness of CI can be obtained. However 
the results for Be are good and could probably be improved with little effort. Less 
extensive CI calculations on Be 2 and HF  are given in Tab. 5 the results being quite 

Table 4. Con/iguration Interaction (CI) calculations on 
Bery l l ium A tom 

]Basis Set Number :~Tumber of To~al Energy 
of GTF's  Coafigura~ions (a. u.) 

33 + 2 ~  9 29 -i3.80183 
5~ + 3P 14 59 -14.53263 
7~ + 5p 22 21t -14.63105 

Numerical SCF* 1 - 14.57302 
STO-CI b 55 - i 4.66090 

�9 l~ef. [29]. b Ref. [51]. 



Non-Empirical Calculations with Gaussian Type Functions. I 205 

promising. However the numerical results particularly in the case of HF, indicate 
(cf. Tab. 5) that  CI cannot overcome the shortcomings of the original SCF wave 
function. 

Any discussion of large scale molecular calculations is incomplete without 
consideration of the practicM difficulties of computation. The method of calculating 
SCF wave functions described above implies a computation ~ime that  varies 
rapidly as the fourth power of the size of the basis set. Experience has suggested 
that  a computer with a cycle time of one or two microseconds can handle a basis 
set of 60 GTF's in about i0 hours for an SCF calculation. This corresponds to a 
eMculation on ethylene giving a total energy within 0.05 a.u. of the ttartree-Fock 
limit, or a very rough benzene calculation, a few atomic units away in total energy 
but possibly of qualitative interest. In  order to extend these SCF calculations to 
naphthMene, for instance, we would require something like 100 to 2000 hours in 
computer time for the rough and accurate cMeulations respectively. 

Table 5. Con/iguration interaction calculations on HF and B% with limited basis set 

System Type of Basis 1~o. of SCF :Energy (a. u.) I%. of CI Energy (a. u.) 
GTI~'s Configurations 

I-IF 23 and 3s + 2~ ~[l -95.3452 I l l  
Be 2 5~ + 3~ and 5~ + 3~ 28 -33A697 145 
B% 5~ + 3~ and 5~ + 3p 28 -33A697 889 

Estimated by second order perturbation theory. 

-95.4267 
-33.2644 
-33.2978~ 

Estimates of computer time required for additional CI calculations over these 
SCF calculations are only available for very small systems, but will certainly be 
much greater then SCF times. 

At the moment time it appears that non-empirical calculation over these SCF 
calculations are only available for very small systems, but will certainly be much 
greater then SCF times. 

At the present time it appears that non-empiricM calculation in the LCAO- 
MO-SCF-CI framework reach their limits, as a result of technical difficulties 
associated with computation, sooner than might have Been hoped. It is natural 
than to ask what systems of chemical interest can be studied at present ? As a 
general principle it is pointless to provide answers to questions which can be 
answered quicker and cheaper by experiment. Attention should preferably be 
concentrated on systems for which oxperhnent is as yet, impossible or very 
difficult. However before any significance can be attached to results of calculations 
of this kind it is essential to perform calculations on many systems of known 
properties in order to establish esthnates of accuracy. 

Finally it must be asked, what can he done for systems too large for calcula- 
tions using the methods outlined here ? It appears that semi-empirical calculations 
based securely on valid approximations may provide the optimum solution. The 
results of non-empiricM calculations should provide a valuable basis for these 
approximations. 

In an attempt to extend the limited experience of small atoms and molecules 
to system s of more chemical interest, a number of calculations have been performed 
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on the formyl series (HCOX) using different sized basis set and different confor- 
mations. These are described in the following papers. 

5. Appendices 

5.1 Mathematical Formalism 

The notation in this section is given in a uniform manner, however for brevi ty  
only the essential mathematical  formalism is presented. For further details the 
reader should consult the references given. 

(i) Integrals 

One of the most formidable problems in the application of quantum mechanics 
to problems of chemical interest has been ~he evaluating of the multicentre 
integrals : 

(~ ]~) = J ,l~(1) ~s(1) g~ (15) 

(~i l ~ ]vJ) = ~R(1)  o(1)~j(1) d~ (16) 

(Vr~J l ~ )  = j ~ ( 1 ) ~ ( 2 )  ~Vj(1)~, (2)  ~ ,  ~=,. (17) 

where & is any one electron operator e.g. h, x, y, z etc. For the class of orbitals 
based on the Gaussian functions, 

~(A, ~, a) = X~' Y~ Z~ ~ (r~A) a" e-ar~ (t8) 

where, XA = X - A x ,  etc. 

~ = x~  + r~ + z~, (19) 
the formulae for the integrals can be obtained explicity. The essential step in the 
reduction of the multicentre integrals is the application of the following theorem. 
The product of two Gaussians [46] having different eentres A and B is itseff a 
Ganssian (apart from a constant factor) with a centre somewhere on the line 
segment AB.  Specifically 

e -  ~r~ = eonst, e -  ~ 4 .  (20) 

The formulas between basic (is-type) Gaussians were first derived by  Be t s ,  
and it  was shown tha t  the formulae for orbitals with higher angular quantum 
numbers may  be derived by  applying differentiation and substitution operators to 
the basic formulae. I f  we define a substitution operator P(r I s) which acts on the 
function writ ten after if and replaces r by  s, i.e. 

P(r [ s)/(r) =/ ( s ) ,  (21) 

then we have the results, 

'[~ 1 P(a 1 ] a 1 -~- 1) ~ (A ,  or a) = ~ ~ x  2F alP(al [ al -- l )  ~(A, 0r a) 

for 
a a = 0 (22) 
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and 
a 

P(a a ] a a + l) ~(A, ~, a) = - ~-~ ~(A,  a, a) (23) 

for general a 4. 
Since the parameters  A,  Lx, a etc. appear only within the definitions of the 

corresponding orbitals, the operations may  be taken over and applied to the 
integrals as well. Thus if one denotes any one of the integrals, 

I (a  I § i )  = ~ ~ I(al) -= ~a I(al  -- l) (24) 

for a 4 = 0 and 
D 

I (a  a + 1) - Oa I(aa) (25) 

for general a t . 
The formula for any integral may  be generated by  applying the above rela- 

tions a sufficient number  of times. The method is well adapted to implementation 
by  digital computers. 

There are times when it is advantageous to work with general integral for- 
mulas. Such a general formula may  be derived through the use of Fourier trans- 
forms [66, 53]. 

l r d~ jk~7  
I ~ l - J 2 ~  k~ (26) 

The method is adaptable to the computation of operators of the form 

r~2 0Z~2 ' rl ~ 2~ ~ ks 

which arise from the magnetic dipole-dipole interactions terms in the tIamiltonian. 
A generalization of BoYs' original Gaussian orbitals was proposed by  S~GE~ 

[47], which allows orbitals of the form 

Y p~ e-Q~ (2s) 
k 

where Q~ is any positive definite quadratic form in the space coordinates, and p~ 
is a polynomial in all or some of these coordinates. This Mlows explicit dependence 
of the wave function on the interelectronic distance. BoYs has suggested the 
inclusion of Gaussian correlation functions [6], 

e -  ar~ (29) 

while B~ow~ and POSRUST~ [8] have proposed the use of ellipsoidal Gaussian 
orbitals, 

e ( -- ax2 --/3Y2 -- Yz~)" (30) 

Formulae for the above orbitals may  all be obtained in a tractable form. 

( i i )  LCAO-M0-SCF _Formalism 

ROOT~AAN has shown [39] tha t  when the total  electronic energy can be 
written in a certain form, the opt imum molecular orbitals 

37 

C r =  ~ Yr~W r =  l,  2 . . . N  (31) 
i = l  

15 Theoret. chim. Acta (Berl.) Vol. 6 
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are such that  the coefficients Yr~ satisfy the equation 

F Y~ = erG Yr (32) 

where Yr is the column vector consisting of the coefficients of the orbital tr. G is 
the overlap matrix given by 

Gil = (7~ 171) = f ~7~(l) ~1(1) dv~ (33) 

the integration being over the spatial coordinates of electron t. The Fock matrix 
F is given by 

/ 7 =  H +  P -  Q + R (34) 
with 

p = 2jr _ s  (35) 

Q = 2cr o - f lK o (36) 

R =  G qt Q + Q q~ G .  (37) 

The elements of the matrices are defined by 

H~ = (7~ I ?' 17J) = f C ( i )  h(1) 7j(i) dv 1 (38) 

where h is the one-electron operator, and by 
N N 

Jr' = ~ ~ Q~l(~i 7] 17~ 7~) (39) 
k = l  1=1 

/V 2V 

g o  = 5 5 e~i(7~ 71c 1 7i 7l) (40) 
k = l  I=1 

with a taking the symbols t or o. The two electron integral (~, 7i [ 7~ 7~) is defined 
by (17) in Appendix 5.t (i). 

The "density matrices" ~* and ~o are given by 
occupied occupied 

e~ = 5 Y~. Y~ + / 5 Yr~" Yr~ (4t) 
r 

closed open 

occupied 

e~ = / 5 Y~" ~ z  (42) 
f 

open 

with the summations being over the open shell or closed shell orbitals only, and [ 
being the fraction of the open-shell which is occupied. The constants cr and/5 given 
above depend on the state being investigated. I t  is seen that  when the state is a 
closed shell, then / is zero so Qo, Q, and R all are zero and the equation is greatly 
simplified. The total energy is given by 

E = trace {(H + F) Qt _ Q [Q~ + ([ _ ~) qo]}. (43) 

The solution of the equation is usually accomplished by an iterative process, 
since the matrix Finvolves the values of :Yrt. An estimate is made for Yinitially, 
and this is used to compute the two density matrices, and hence the two J and 
two K matrices. These are assembled to form P and Q, and the latter one is used 
[37] with the overlap matrix G to form R. The equation is solved to give a further 
estimate for II, and the process is repeated. For the simpler closed-shell case, this 
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procedure often converges, but  occasionally the solution is found to oscillate, and 
some extrapolation procedure [3~] is necessary to force it to converge. 

The most  t ime consuming operation in the solution of SC~" equations is usually 
the contraction of the two-electron integrals with the density matr ix  to form the 
J and K matrices. This t ime can be reduced ff the two-electron integrals can be 
fitted in the high-speed memory simultaneously, or if they can be made available 
in a suitable order. Alternatively the computation can be done with symmet ry  
orbita,ls as the ~B, which makes the equation separable, but  this does not necessarily 
shorten the total  computation time. 

(iii) Electron Density Contours 

The density matr ix  of the r~h MO, in accordance wi~h the definition given in 
Appendix 5.1 (ii) is, 

27 2V 

e~( i, i) = ~ ~ Y~ Y~J = Y / t ' ~  (44) 
i = 1  ~=1 

and the density value at a given point is 
27 hr 

Dr(x, y, z) =/(r) ~ ~ w(x, y, Z) e~(i, i) w(X, Y, z) (45) 
i = 1  j = l  

where/(r)  is the integrated spin par t  of the orbital with 2 if  the orbital is doubly 
occupied, i ff it is singly occupied and 0 if it is empty.  Consequently only occupied 
orbitals possess electron densities. Nevertheless if one wishes to see the shape of 
an empty  orbital it can be formally t reated as if it were doubly occupied. 

The total  electron density of the molecule is the sum of the M occupied orbital 
densities. 

M 

.D(X, Y, Z) = ~ D~(X, Y, Z). (46) 
r = l  

The problem is simply to calculate the individual orbital electron density 
values at every intersection of a given mesh around the molecule. In  practice 
1600 points, tha t  is a 40 • 40 mesh provides a fine enough grid for a t0 • l0 a.u. 2 
area. Special purpose programs may  be used to find electron density contours 
automatically from the available density values. The contours may  be recorded 
photographically from the screen of an oscilloscope where the computer visually 
displays the contours of requested electron densities or a two dimensional (X, Y) 
plotter m a y  be connected to the computer to obtain the electron density maps. 

(iv) Population Analysis 

Three quantities are calculated which to some extent reflect the one electron 
distribution in the system studied. These quantities are given in terms of the 
overlap matr ix  G and the one particle spinless density matr ix  D. The density 
matr ix  D may  be either 2Qt where Qt is defined in Appendix 5.1 (ii), or P ~  or Rpq. 
These last two matrices are defined in Appendix 5.1 (v). 

I t  is convenient to discuss these quantities in terms of matrices referred to a 
re-ordered basis set of atomic functions. Let  the atomic functions Nt be re-ordered 
so tha t  the orbitals on a given atom occur consecutively in some list. Denote the 

15" 
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functions on atoms R by  ~/R, i = t~ m where there are m functions on centre R. 
The matrices referred to this re-ordered basis will assume block form and the 
relevant blocks will be denoted by  M R for the block involving only the orbitals of 
atom R and M Rs for the block involving the orbitals of atoms R and S. 

The required quantities are then 

xR,  -- 2 (47) 

yR = 5 + (48) 

Z R = y R  + ~ ' X R Z  . (49) 
R>S 

I t  is easy to show tha t  

Z R = 2M (50) 
R 

where 2M is the number  of electrons. 
The quanti ty Z R, referred to as the gross atomic population of a tom R, is to 

some extent a measure of the average charge (in electrons) on the a tom R in the 
molecule. The gross atomic population becomes equal to the net atomic population 
(yR) ff the orbitals on the different centres are orthogonal. The te rm overlap popu- 
lation X Rz can be thought of as a measure of the overlap charge density. 

The relationship between these quantities and the actual one electron density 
can be seen most clearly by  introducing the normalized orbital and overlap 
densities 

= 

respectively. Then the one electron density (normalized to 2M) is 

PI( I )  2 R R R R = D~j ~ij(t) + ~ ~ ( i )  Rs Rs Rs 

(v)  Configuration Interaction 

1~o a t tempt  will be made to explain in detail the theoretical basis of the confi- 
guration interaction procedure as this is the subject of other papers [37, 51]. A 
brief outline will, however, be given. 

I t  is assumed tha t  the co-dctors of equation (3) m a y  be written as single 
bonded functions composed of SCF molecular orbitals 

~ = d (r r - . -  ( r  r  (r . . .  r  (53) 

where d is the ant i symmetry  operator and 

/r CJ(i) [~(i) t~(J) - ~(i) ~(i)] 
(r CJ) = tr Cj(j) [~(i) fl(j)] 

(r = r ~(~). 

if r # Cj (54) 
if  r = Cj 

(55) 

A single bonded function m a y  be chosen to transform like any one dimensional 
irreducible representation of the point group of the molecule. As any bonded 
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function is an eigenfunction of S 2 and Sz. S i@ e  bonded functions can satisfy the 
restrictions placed on co-detors in Section 2.1 and hence serve as suitable expan- 
sion functions, for the ground states of almost all molecules. Clearly the single 
determinant of simple closed shell SCF theory is just a special case of a bonded 
function in which each spin coupled pair (r Cj) is composed of identical orbitals. 

In  the CI procedure the dominant co-detor or root function ~o, is taken to be 
the SCF wave function. From this function and the given molecular orbitals a 
limited set of co-detors is built up as described in section 2.1. Each co-detor 
formed by  substitution is examined to see if any linearly independent co-detors 
of the same form can be made up from its constituent orbitMs. As many as can be 
formed are formed, and such a set of co-detors is referred to as a eanonicM set. 
From the final list of co-detors (5) required to solve the secular problem (6). These 
formulae express the matr ix elements symbolically in terms of one and two elec- 
tron integrals over the molecular orbitMs. The matrix elements are evaluated by 
substituting numerical values for the integrals in the formulae. The secular 
problem can now be solved to yield the required cigen-vMues E,  and vectors C~ 
such that  

T~. = E C~ tp~ (56) 

and 

(T~ ] ~e ITs) = ~ .  (57) 

The vectors are used to calculate spinless one particle density and transition 
density matrices P'~, defined so that  

( ~  I s J ~ )  = E P~' (~ J k I~J) (58) 
ii 

where k is any spinless one electron operator, such that  

2M 

JC (1 . . . . .  2M) = E k(i). (59) 
i = i  

The density matrix P ~  is composed of density matrices for the individual 
co-deters ~bp thus 

= ~*~ ~ R~ (60) 
P,q 

with R~q defined so that  

(r I : ( I r  = E R~ (v, 1 k Iw).  (61) 
i] 

Using formula (58) moments and transition moments may be calculated for 
the polydetor wavefunctions, while using formula (6i) moments and transition 
moments may be calculated for any pair of co-deters. 

5.2 Computational Details 

The POLYATOM System has been written in the form of a number of Technical 
Notes [18, 45, 50]. The programs as developed will be continuously submitted in 
the future to the Quantum Chemistry Program Exchange (Dr. F~A~KLI~ P~oss~a, 
Department of Chemistry, Indiana University, Bloomington, Indiana, USA 47405). 
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(i) List o/Programs 

The system at present contains the following programs : 
i. PA20: A program to write a tape containing the minimum list of integrals 

required to be calculated from specifications of the symmetry properties of 
the constituent functions. 

2. PA30: A program to evaluate the one and two-electron integrals as specified 
by the above tape, and to write their values, with labels, on a second tape. The 
functions are restricted to be of the form 

V = N(Cs + U~X + CyY + r e -~r~ (62) 

(i.e., s and p symmetry type). There may be up to 50 functions and 20 ccntres. 
3. PA31: A program to continue PA30 if it stopped during the evaluation of two 

electron integrals due to machine failure. 
4. PA33: A program to evaluate one electron integrals over the basis functions 

of s, p and d symmetry type. 
5. PA36: A program to evaluate two electron integrals over the basis functions 

of s, p and d symmetry type. 

~7 = N(Cs + CxX § Cy Y + CzZ § CxxX 2 § C ~  Y~ + CzzZ~ + CxyX Y § 

§ CxzXZ § Cyz ~YZ) e -~r~ . (63) 

6. PA39: A program analogous to PA30 but  capable of using some previously 
evaluated integrals supplied by an additional tape. 

7. PAd0: A closed-shell SCF program which uses the tape of integrals in the form 
produced by PA30. There is no restriction on spatial symmetry, and there may 
be up to 50 functions. 

8. PAdi : An open shell SCF program, similar to PAd0, using Roothaans proce- 
dure. 

9. PA45 : A dipole moment program, with the restrictions of PA20. 
i0. PA47 : A program to perform Mulliken's population analysis. 
l i .  PA48: A program to calculate radial functions and radial electron density for 

atoms. 
12. PA50: A program to construct a starting coefficient matrix for PA40 and 

PA4t. 
t3. PA60: A program to calculate electron density values on given mesh points 

around the molecule. 
14. PA65 : A program to plot electron density contours from data evaluated from 

PA60. 
15. PAS0: A program to construct canonical sets for CI. 
16. PA81 : A program to construct electronic configurations by single and double 

substitution. 
i7. PA82: A program to calculate symbolic matrie elements for CI. 
i8. PA83 : A program to evaluate the matrix elements Hvq, Spq for CI. 
t9. PA84: A program to perform integral transformations. 
20. PA85: A program to solve secular problem using Householder's method. 
21. PA851: A program to solve secular problem using Boys '  method. 
22. PA86 : A program to form one particle density matrix from the results of PA85. 
23. PA86 t : Aprogram to form one particle densitymatrix from the results of PA851. 
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24. PA87 : Program to compute one electron matr ix  elements. 
25. PA88 : Program to edit numerical matr ix  elements from the results of PA851. 
26. PA88i  : Program to edit electronic configurations from PA8i.  
27. PA89: Program to calculate energy using perturbat ion theory. 

All the above programs are working, and are being continually improved and 
supplemented. Special purpose STO integral programs have also been used within 
the system. 

The method used to select the programs to be used for a particular job is to 
include in the data cards which specify the programs to be entered. All the pro- 
grams are compiled permanent ly  on one tape as a "chain job", and input data  
cards select which link of the chain is to be executed next. This has made the 
operation of the system very convenient, with the exception of the book-keeping 
necessary for any large system. However, it is at  present quite simple for anyone 
to prepare data to run any calculation which is within the capability of the system. 

(ii) Orbital Exponents 

The present method follows tha t  of REEVES and I - I~a I soN [47], and consists 
of scaling the near-optimum exponents for neon by  a factor related to the Slater 
rules for STO's to obtain values for F, 0 . . . .  etc. The nitrogen [35], and neon [19], 
parameters  were restricted to be in geometric progression so tha t  the ratio (C) 
between adjacent exponents was constant. In  the optimization procedure two 
parameters,  the exponent of the "centre gaussian" (/3) and the ratio (C) of adjacent 
exponents were varied. The opt imum values (/~0 and Co) were taken at the minimal 
total  energy according to a parabolic surface - 

E = E o g- P(fi -- flo) 9' + Q(G - Co) 2 . (64) 

The actual orbital exponents (~) were calculated from the optimal parameters  
(rio and Co) as follows -- 

Odd Number  of GTF's  

1 
= 

0~1 = ~0~0  

~2 = O02~0 

Even number of GTF's  

0r ~ flO 

1 
- -  

(hypothetical central gaussian) 

~ = Vo Y~of~o �9 
Some empirical method similar to Slater's rule has to be devised for sealing the 
opt imum orbital exponents obtained for nitrogen [36] and neon [19] from atom of 
Z 1 to atom Z 2 nuclear charge. The multiplying factors (/) of s and p type func- 
tions given below were chosen on intuitive grounds - -  

I[Z2-0.3~2 [Z2-1.0~11 
/8 = I t \ z 1 _ 0 . 3  / + \ ~ / j  (65) 

/ P = \ Z I - I . 0 ]  " (66) 
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r o 

~5 

q 5  

o~ 

~q 

g q ~ k ~  

~ . . ~ . . �9 ~ . . . . .  

~ . ~ ~  . . ~ . . . .  

o ~ x ~  o ~ : ~ w  e e ~  o ~  .~ 

~ o  ~ ~ . .  ~. ~ .  . ~o [ ~ -  

�9 ~ ~ 
~ ' ~  

Because  GTF's  do not  possess  principal quantum numbers  the sealing factor of 8 
type  orbital exponents  were taken as the ari thmetic  mean  of  the i s  and 2s scaling 
factors used for STO's. The mult iplying sealing factors as well  as the actual 
orbital exponents  for a toms  from l i thium to neon are tabulated (Tab. 6 --  7). All  
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Table 7. Sealing Factors ]or Orbital Exponents o/GTF's 
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Atom Li Be B C N 0 F Ne 

3~, 5 ~, 7~ 0.05893 0A283t 0.2~6t6 0.32698 0.46077 0.61754 0.79728 t.00000 
lp 0A2346 0.25000 0.44444 0.69444 ~.00000 ~.361~1 ~.77778 2.25000 
2~, 3~ 0.04938 0 .1 i l l i  0A9753 0.30864 0.44444 0.60494 0.790~2 i.00000 

orbi tal  exponents  were scaled from neon  except l -  for which ni t rogen was used as 
basis. 

This choice is made as a compromise between simplicity and  accuracy. While 
the authors  feel t ha t  i t  is reasonably  adequate  for their  present  purposes, they  
also realize t ha t  a much  firmer basis for the choice of exponents  will soon become 
necessary, and except t ha t  an  accurate, systematic  opt imizat ion of atomic para- 
meters  will be impor t an t  in  this respect. They  would hope t ha t  rules anMogous to 
the Slater rules might  emerge, no t  only for atoms, bu t  also for molecules. 
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